
elfconv: AOT compiler that translates Linux/AArch64 ELF binary
to WebAssembly

Masashi Yoshimura, NTT
Twitter : @ming_rrr

2024/02/04

repo: https://github.com/yomaytk/elfconv

1

https://github.com/yomaytk/elfconv

• ✅ portable
– enables to run apps on both browsers and servers without modification

• ✅ secure
– highly isolated from the host kernel on the server by WASI.

– memory isolation with harvard architecture

• architecture that separates codes and data in the memory.

• ❌ limitation in the capability of apps
– can jump to only the instructions that are determinable at compile time

• cannot indirectly jump to the instructions generated in the data memory at runtime

– WASI implementation doesn’t cover all POSIX APIs (e.g. fork, exec)

Features of WASM

2 

Many programming languages support WASM (e.g. C, C++, Rust, Go, …).

However, it isn’t easy to build WASM in some cases as follows.

1. The programming language that you want to use doesn’t completely support WASM

- The support of some languages is insufficient

- ref: https://github.com/appcypher/awesome-wasm-langs

2. binaries are available, but the source codes of the binaries are not available

- e.g.) The source code is not available under lisence

3. difficult to build the source code

- cannot use the dependent libraries

Run binaries on WASM environment

challenging in building WASM

3 

https://github.com/appcypher/awesome-wasm-langs

• TinyEMU: https://bellard.org/tinyemu/
– Author: Fabrice Bellard
– x86 and RISC-V emulator available on the browser
– Linux kernel can run on the browser

• container2wasm: https://github.com/ktock/container2wasm
– Author: Kohei Tokunaga, NTT
– enables to run Linux kernel and container runtimes with emulators compiled

to WASM (e.g. TinyEMU)
– can run containers without modification on the browser and WASI runtimes

But, emulators possibly incur large performance overheads…

Existing projects that run Linux binaries on WASM

AOT compile Linux binaries to WASM!

4 

https://bellard.org/tinyemu/
https://github.com/ktock/container2wasm

• elfconv-lifting-module compiles Linux ELF binary to LLVM bitcode

• compile LLVM bitcode and elfconv-runtime to WASM

– elfconv-runtime includes Linux syscalls emulation etc…

elfconv: AOT compiler from Linux/ELF to WASM

5 

• Demo Program : Neural Network for training MNIST database

– MNIST database: large database of handwritten digits for training

– repo : https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

– keep outputting Average Loss and Accuracy

6 

Demo

Fig. MNIST database

https://en.wikipedia.org/wiki/MNIST_database
https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

• elfconv-lifter
– parse ELF binary, map every ELF section, etc…

• remill (elfconv-backend) : https://github.com/lifting-bits/remill
– library for lifting machine code to LLVM IR

How it works? (ELF -> LLVM bitcode)

7 

https://github.com/lifting-bits/remill

• statically link LLVM bitcode and elfconv-Runtime
• elfconv-Runtime

– mapped memory (stack, heap), Linux system calls emulation

How it works? (LLVM bitcode -> WASM)

8 

• libc implementation: emscripten, wasi-libc, etc…

Case 1. use libc function if it exists (e.g. write)

How it works? (Linux syscalls emulation)

9 

• libc implementation: emscripten, wasi-libc, etc…

Case 2. pseudo-implement the syscall if it doesn’t exist (e.g. brk)

How it works? (Linux syscalls emulation)

not use brk (unsigned long brk)

10 

• Benchmark : LINPACK Benchmark (https://netlib.org/benchmark/hpl/)

– program to evaluate 64-bit floating-point operations per second (FLOPS).

– source code : https://www.netlib.org/benchmark/linpackc.new

11 

Performance

• compare three methods

– 1. Emulation 2. AOT compile (x86-64) 3. AOT compile (WASM)

12 

Performance Measure Method

1. Emulation

 195.115 (MFLOPS)

2. AOT compile (x86-64)

 200.177 (MFLOPS)

3. AOT compile (WASM)

 68.958 (MFLOPS)

ref.) compile from source code:

 x86-64: 5527.070 (MFLOPS)

 WASM: 2850.599 (MFLOPS)

13 

Performance

1. Emulation

 195.115 (MFLOPS)

2. AOT compile (x86-64)

 200.177 (MFLOPS)

3. AOT compile (WASM)

 68.958 (MFLOPS)

ref.) compile from source code:

 x86-64: 5527.070 (MFLOPS)

 WASM: 2850.599 (MFLOPS)

14 

Performance

1.02 times

0.34 times

0.51 times

• append system calls emulation

– a part of Linux system calls are implemented in the current version

– Some system calls (e.g. fork, exec) are difficult to implement when targeting

WASM

• support dynamic linking

– statically linked ELF binary is suppored in the current version

• make the generated binary and LLVM bitcode more efficient

– want to generate LLVM bitcode that runs faster than QEMU

– want to make the translated WASM faster

Future works

15 

• translate ELF of other CPU architectures
– only aarch64 is supported in the current vesion

Future works

16 

• output other binary formats
– WASM, ELF/x86-64 are supported in the current version

Future works

17 

• Spread elfconv and integrate into existing ecosystem

– Please hesitate to throw an issue or make PRs!

Future works

18 

• elfconv is successor to myAOT: https://github.com/AkihiroSuda/myaot
– Author: Akihiro Suda, NTT
– An experimental AOT-ish compiler (Linux/riscv32 ELF → Linux/x86_64 ELF, Mach-O,

WASM, ...)

19 

Related works

https://github.com/AkihiroSuda/myaot

Questions?

20 

repo: https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv

• A LLVM IR function consists of many basic blocks.
– basic block is a straight-line code sequence with no branches in except to the entry and no

branches out except at the exit (e.g. 1_mov, 2_ldr, 3_add, …).

• convert a function to a LLVM IR function (e.g. _func1 -> @_func1_lift)
– But, elfconv-lifter needs to detect every function from ELF

How it works? (remill)

21 

• convert a CPU instruction to a LLVM IR block (e.g. mov x2, x0 -> 1_mov)

How it works? (remill)

22 

• convert a CPU instruction to a LLVM IR block
– Operand calculation
– call the function of the instruction-specific operation

How it works? (remill)

23 

How it works? (indirect jump)

24 

