
WEBASSEMBLY COMPONENT MODEL
WHAT? HOW? AND,
WHY YOU SHOULD NOT IGNORE IT!

M A R C H 2 0 2 4

Thorsten Hans

Cloud Advocate @ Fermyon Technologies

mail: thorsten.hans@fermyon.com

x: @ThorstenHans

web: fermyon.com

 thorsten-hans.com

WebAssembly Component
Model
What Is It

What is the WebAssembly Component Model

The WebAssembly Component Model is an addition to

core WebAssembly that addresses shortcomings and

streamlines interacting with WebAssembly modules

What is the WebAssembly Component Model

• Think of the Wasm Component Model as a wrapper around

your ”Core” WebAssembly modules

• It defines a canonical ABI which all components adhere to

• Specifying and standardizing data layout in memory

• Giving us richer types such as strings, structs, lists

What is the WebAssembly Component Model

• We use WebAssembly Interface Type (WIT) as Interface

Description Language (IDL) to define contracts

• Ultimately, the Wasm Component Model dramatically

simplifies using components written in different languages

What is the WebAssembly Component Model

wasi:http/incoming-handler

WebAssembly Component
Model
Why You Should Not Ignore It

Why should you not ignore it!

• Components have a long history in software development

• Rooting back to Douglas McIlroy in 1968

• Developers gained productivity by composing applications

using different components

Why should you not ignore it!

• Numerous technologies were successful due to having a

component model & allowing component composition

• Some famous representatives are (my take)

• COM & ActiveX

• Open Web Interface for .NET (OWIN)

• Web Components

DataQ Instruments https://tinyurl.com/wasmio01 Infragistics https://tinyurl.com/wasmio04
LabWindows Controls. https://tinyurl.com/wasmio02 ASP.NET Core Middlewares https://tinyurl.com/wasmio05
Introduction to ActiveX https://tinyurl.com/wasmio03

https://tinyurl.com/wasmio01
https://tinyurl.com/wasmio04
https://tinyurl.com/wasmio02
https://tinyurl.com/wasmio05
https://tinyurl.com/wasmio03

Why should you not ignore it!

• WebAssembly makes apps portable across platforms &

architectures

• The Wasm Component Model takes portability one step further

• Components are portable across programming languages

WebAssembly Component
Model
How You Can Use It Today

From Source to a Wasm Component

• Language specific tooling is available to build

WebAssembly Components

• For Python we use componentize-py

• For JavaScript we use jco and componentize-js

• For Rust we use cargo-component

https://github.com/bytecodealliance/componentize-py/tree/main
https://github.com/bytecodealliance/jco
https://github.com/bytecodealliance/ComponentizeJS
https://github.com/bytecodealliance/cargo-component

wasm-tools

• CLI & library

• github.com/bytecodealliance/wasm-tools

• Tool for manipulate Wasm modules & components

• Composing Wasm Components with wasm-tools compose

• Inspect a WIT contract with wasm-tools component wit

http://github.com/bytecodealliance/wasm-tools

WebAssembly Composition (WAC)

• CLI for composing WebAssembly Components

• https://github.com/peterhuene/wac

• Provides the WAC DSL to describe how components should be

composed together

• Find further information on integration with wasm-tools at

https://github.com/peterhuene/wac/issues/35

https://github.com/peterhuene/wac
https://github.com/peterhuene/wac/issues/35

DEMO – Extensibility with Wasm Components

Host Application

DEMO – Extensibility with Wasm Components

Host Application
world extensibility {
 import transform: func(input: string) -> string;
}

DEMO – Extensibility with Wasm Components

Host Application
world extensibility {
 import transform: func(input: string) -> string;
}

Wasm Component Wasm Component Wasm Component

Shared WIT

DEMO – Extensibility with Wasm Components

Host Application
world extensibility {
 import transform: func(input: string) -> string;
}

Wasm Component Wasm Component Wasm Component

world plugin {
 export transform: func(input: string) -> string;
}

Shared WIT

DEMO – Extensibility with Wasm Components

Host Application
world extensibility {
 import transform: func(input: string) -> string;
}

Wasm Component Wasm Component Wasm Component

world plugin {
 export transform: func(input: string) -> string;
}

In
vo

ke
 tr

an
sf

or
m

(in
pu

t)

DEMO

Extensibility using the

Wasm Component Model

DEMO – Middlewares & Portability
ACME Service

Providing webhooks
Wonka 3rd Party Service

Call via HTTP POST over HTTPS

DEMO – Middlewares & Portability
ACME Service

Providing webhooks
Wonka 3rd Party Service

HTTP POST with signed payload

DEMO – Middlewares & Portability
ACME Service

Providing webhooks
Wonka 3rd Party Service

world signing {
 import sign(...) -> list<u8>;
}

world verification {
 import verify(...) -> bool;
}

HTTP POST with signed payload

DEMO – Middlewares & Portability
ACME Service

Providing webhooks
Wonka 3rd Party Service

world signing {
 import sign(...) -> list<u8>;
}

world verification {
 import verify(...) -> bool;
}

Invoke sign(…) Invoke verify(…)

HTTP POST with signed payload

ACME Signing Wasm Component
(Signing & Verification)

world hmac {
 export sign(...) -> list<u8>;
 export verify(...) -> bool;
}

DEMO

Middlewares & Portability using the

Wasm Component Model

Key Takeaways

• Wasm Components are self-contained units of work that

allow interaction via rich contracts defined in WIT

• We can load components dynamically

• We compose bigger systems from components written in

different languages without worrying about how data

structures are represented in memory

Do you want to dive deeper?

Join Ryan’s talk tomorrow (March 15th) @ 12:40

Deconstructing WebAssembly Components

Thank you!
github.com/ThorstenHans/wasmio-2024-demos

@fermyontech

